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W I N D - T U N N E L  INVXSTIGATION AT EIGE SUBSONIC SPEEDS OF THE 

SwEpTBIIcK-, M-, W-, AND CRANKED-WING PLAN FOMS 

By Kenneth W. Goodson and Robert E. Becht 

A n  investigation was made a t  high subsonic  speeds of a c o q l e t e  
model having a basic sweptback wing or one of three composite plan-form 

through  modifications t o  the basic 45O swept-wing design. All w i n g s  
were  of aspect   ra t io  4.0 and taper r a t i o  0.3. These wings were tested 

tunnel a t  Mach numbers from 0.80 t o  0.92. 

. wings. The comosite plan-form wings (M, W, and cranked) were obtained 

J through an angle-of-attack  range in  the Langley high-speed 7- by 10-foot 

The data show that all the composite plan forms alleviated  the 
tendency  toward longitudinal  instabil i ty at  Illoderate and high lift coef- 
f ic ients  that &st& for  the basic swept-wing model. O f  the wings 
investigated,  the M plan form appeared t o  have the most desirable s t ab i l f ty  
characteristics  over  the Mach number range tested and t o  a l l o w  the 
greatest   lat i tude  in  selection of horizontal-tail  position. For the tail 
length investigated,  longitudinal  instability existed at high l i f t  coef- 
f ic ients   for  each of the wings with  the  horizontai ta i l  in   t he  highest 
position (0.57 semispan above wing-chord plane) . The center t a i l  (on 
w i n g  chord plane) appeared to reduce  the  severity of the  instabil i ty.  
Addition of a XI-percent-mean-aerodynamic-chord slat t o  the outboard 
35 percent of the basic swept-wing semispan also appeared t o  improve the 
s tab i l i ty .  

Posit ive  tai l-off  directional  stabil i ty w a s  obtained  with the model 
having the "wing at  high l i f t  coefficients  for all Mach  numbers except 
0.92; whereas negative t a i l -o f f  s t ab i l i t y  was obtained  with  the swept wtng 
at  a l l  lift coefficients and Mach  numbers investigated. The vertical-  
tail contribution t o  direct ional   s tabi l i ty  decreased with  increasing lift * 

coefficients up to a Mach  number of 0.90 for  the M-w5ng model but was 
essentially  constant f o r  the swept-wing  model through  the Mach number 
range tested.  
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INTRODUCTION 

The use of th in  swept w i n g s  t o  inrprove the high-speed-performance 
characterist ics of airplanes has resulted in  abrupt  reductions in longi-- 
tudinal s t ab i l i t y  that have been described as "pitch-up." Results of an 
Fntensive  study  of means for   a l leviat ing  the _pitch-up tendency on  con- 
figurations having a 45O sweptback wing of aspect  ratio 4.0 and taper 
r a t i o  0.3 have.b-een-reported  in  references 1 t o  4. O f  the various w i n g  
modifications and tai l  positions  previously studied, it appeared that 
sat isfactory  high-l i f txtabi l i ty   (par t icular ly  at Mach  numbers near 0.9) 
could be obtained only by  conibining  one of the most effective  leading- .. 

edge  modifications  with a tail position w e l l  blow t he  wing-chord .plane. 
The present.  investigation- w a s  undertaken t a  dekrmine  conditions under 
wMch sa t i s fac tory   s tab i l l ty  m i g h t  be  obtained when the basic swept-wing 
plan form is modifiebby more extreme measures than those  considered i n  
references 1 t o  4. The modifications t o  the basic swept w i n g  were made 
by skaring the  airfozl  sections t u  form composite wing plan forms 
described. as the M-, W-, and cranked  types.  Longitudinal  characteristics 
were determined for a model equipped  with  each of these wings (including 
the  basic sweptba-ck  wing) and with the horizontal-tail  located a t  various 
heights. Some la te ra l . s tab i l i ty   charac te r i s t ics  were dete&ed f o r  two 
of these w i n g s .  

A l l  data are  presented  about  the  stability axes as shown i n   f i gme  1. 
The Pitching-morpent coefficients  are referred t o  the  quarter-chord of . .  

the mean aerodynamic chord, except where otherwise  noted. 

CL 

CD 

c, 

lift coefficient, - L i f t  
ss 

drag coeff  ici.ent, Drag 
qs. 

pitching-moment coefficient, Pitching moment 
" 

rolling-moment coefficient, Rolling . moment 
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lateral-force 
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coefficient , Lateral force 
¶S 

lift-drag ra t io  

dynamic pressure, p ~ * / 2 ,  ~b/ sq  ft 

mass density of air, slugs/cu ft 

free-stream  velocity, fps  

Mach  number 

w h g  area, 2.250 sq ft 

local chord parallel t o  p b e  of symmetry, f t  

w i n g  mean aerodynamic  chord, 2 Jbf2 c%y, 0.022 ft 

horizontal-tail mean aerodynamic chord, 0.338 ft 

ver t ica l - ta i l  mean aerodynamic chord, 0.757 f t  

.. . . 

wing span, 3.000 f t  

spanwise distance from plane of symmetry, f% 

horizontal tai l  height from fuselage  center line, positive 
upward, f t  " . 

Subscript: 

angle of attack, deg 

angle of sideslip,  deg 

P denotes partial derivative of a coefficient with respect to 
aC 

sidesHp  angle; f o r  example, c = 2 
28 ap 
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MODEL AX0 APPARMPtJS 

A three-view drawing of the.complete  research model w i t h  the  basic 
45' sweptback . w a  of aspect  ratio 4.0 and taper   ra t io  0.3 is shown i n  
figure  2(a) . The composite wing p l a n  forms (fig.  2(b) ) were designed 
by shearing the basic 45O swept wing i n  a chordwise direction while 
holding  the  aspect  ratio and taper   ra t io  constant-. The swept wing was 
constructed of solid alumFnum whereas the composite-wings  were made of 
fiber-glass-plastic composition  over steel spars. A sketch of the vert i -  
cal  locations of- the horizontal tail is shown i n  figure  2(c). The con- 
struction of the t a i l  assembly l i m i t e d  the .igcidence of the,horizontal  
t a i l  t o  zero  degrees for  a l l  tail heights. The dimensions of  the  fuselage, 
which had a fineness  ratio of 10.94, are presented in   f igure 2(d): A 
photograph of - - the  complete model w i t h  the "wing plan form moUneed on 
the sting in the Langley  high-speed 7- by. lO-fo.o%-tunnel is shown i n  
figure 3 .  

For some tests the outboard 35 percent of the swept-wing semispan 
vas f i t t e d  w i t h  a lead--edge s h t  (auxi l iary  a i r foi l )  . (See f i g  . 4) . 
This particular slat configuration was used as an  expedient  device for  
determining the  general  effects  of.leading-edge slats or  auxiliary 
a i r fo i l s .  . .  

TESTS 

The sting-supported mde l  was tested i n  the Langley  high-speed 7- 
by 10-foot  tunnel  through a Mach nuniber range of 0.80 t o  0.92 and 
through an angle-of-attack  range  that-.varied w i t h  loading conditione 
(the m a x i m u m  range being  about -20 to- 24O) . The lateral parameters were 
determined by pitching the npdel  through the  angle-of-attack range at 
s idesl ip  angles of *bo. The Reynolds nuniber (based on the niean aero- 
dynamic chord) varied with Mach nmiber from about 2.5 x 106 to 3 .O x 10 6 . 
Note that the  horizontal t a i l  was removed fo r  the tail-off  pitch tes ts  and 
that both  the  horizontal &hd vertical tails were removed for the lateral- 
s t ab i l i t y  t a i l - o f f  t e s t s .  

CORRECTIONS 

Blockage corrections w e r e  applied -to the results by the method of 
reference 5 .  Jet-boundary corrections  to the angle of attack and drag 
were applied i n  accordance w i t h  reference 6 .  Corrections for the longi- 
tudinal  pressure  gradient have been applied t o  the data. 
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Model support  tares have not been applied  except  for a fuselage base 

7 
pressure  correction  to  the drag. The corrected drag data represent a 
condition of free-stream  static  pressure a t  the fuselage base. From past 
experience, it is expected that the  influence of the s t i n g  support on the 
model characteristics is negligible  with regard to  lift and pitching 
moment. 

The angle of attack and angle of sideslip have been corrected f o r  
deflection of the  balance and sting support. No  attempt has been made 
to  correct  the  data f o r  aeroelastic  distortion of the model. 

me resul ts  of the investigation are presented i n  the figures 
listed as follows : 

Figure 

c Longitudinal  characteristics of the  mdel  with  the. 
swept, M-, W-, o r  cranked-wing plan form . . . . . . . . . . .  5 t o  9 

Longitudinal  stability  characteristics of the model 
.I w i t h  various wing  plan forms adjusted  to a 0.05E 

s t a t i c  margin a t  M = 0.80 . . . . . . . . . . . . . . . . . . . .  10 
Variation of - w i t h  Mach nmiber for  several  horizontal- acm 

a% 
tail positions . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

Variation of tail contribution t o  long i tud ina l  s t ab i l i t y  

Lift-drag  ratios o? the d e l  with  various w i n g  plan forms. 

Longitudinal  characteristics of the swept-wing model with a 

Lateral s t ab i l i t y  parameters of the model with swept- and 

with t a i l  height . . . . . . . . . . . . . . . . . . . . . . . . .  12 

Horizontal t a i l  off . . . . . . . . . . . . . . . . . . . . . . .  13 

0.1G slat . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

"wing plan forms . . . . . . . . . . . . . . . . . . . . .  15 and 16 
DISCUSSION 

Longitudinal  Characteristics 

Effect  of w- plan form and tail height.- Characteristics of the 
fuselage  alone  are compared Fn figure 5 with  characteristics of the - swept-&-fuselage conibination.- These results show that the nanlin- 
ear i t ies  of  the wing-fuselage pitching-moment curves  apparently  result 
from the w i n g - a l o n e  characteristics o r  .possibly from interference effects. 

1 - 
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The tai l -off  data presented in  figures 6 t o  9 show that the tail-off 
s t a b i l i t y  near a = Oo varies  considerably  for the different w i n g  plan 
forms in  sp i t e  of the f a c t  that the quarter-chord  point  of--the mean 
aerodynamic chord Was held a t  essentially  the same fuselage  station  for 
a l l  w i n g s .  This i s  i l lus t ra ted  by the resul ts  of the following table 

which  compares  va1ue.g -of. for  the  fuselage-alone  configuration 

and the wing-fuselage  configurations.: . .  

Configuration 

Fuselage  alone 
Swept  wing and fusehge - 

M-wing and fuselage 
W-wing and fuselage 
Cranked wing and fuselage 

at- M = 0.80 

0.0070 - . 0041 
.0114 . . -. ooog 
' 0055 

U 

Although the  angle-of-attack range that-could be obtained during the  
tail-on tests was somewhat limited  (particula.rly when the t a i l  was in the 
low position) , it is believed that most of the important - characteristic6 
of the  various  comlete-model  configurations  are shown by the t e s t  data 
obtained. In  order.to  provide  .a.reasonable basis fo r  corqparing shapes 
of  the -pitching-moment curves, some of the data obtained a t  Mach  nunibera 
of 0.80 and 0.90 have beeli -recomputed w i t h  the assumed position of the 
center of gravity  adjusted  b-rgive a s t a t i c   p g i n  of O.OgE a t  a Mach 
number of 0.80 for  each  co&iguration. Results for  tail-off,  center- 
tail, and high-tail configurations. are. shqyn i n  figure 10. . The tai l-off 
resul ts  show that although any of the composite wings provide improved 
characteristics over those  oFthe swept wing at  a Mach number of 0.80, 
only the "type composite. wing providd  a -substantial imgro.vement a t  
M =- 0.90. With the center-tail position, a tendency toward pitch-up is 
indicated for  the swept and cranked wings.at Uft .caefficients of from 
0.4 t o  0.6, but  there  appears t o  be no such  tendency for  the 14- and W-wings . - . 

With the t a i l  i n  the high position, a pitch-up  existed  for any of the  wings 
tested where sufficiently  high  angles  of  attack were reached. Such a 
condition is  indicated a t  M = 0.80; however, ab M = 0.90, pitch-up 
occurred only  f o r  the swept wing w i t h b  the limited angle-of-attack range 
that could be obtained. 

" 

- 

It should be pointed out that the degree of pitch-up f o r  the tail-on 
configurations ndght have been somewhat different .$f the.  incidence of the 
horizontal tai l  had been set fo r  trim in  the high angle-of-attack range 
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rather  than  the  arbitrary  value of zero  degrees tested. The pitch-up 
might be less  abrupt  for  the trimmed condition because of loss in tail  
effectiveness a t  the higher angles of a t tack   causa  by possible  reduction 
in dynamic pressure a t  t h e   t a i l .  

Values of the pitching-moment-curve slope % of the  various tail- 

3 

aCL 
on and tail-off  configurations are presented in   f igure ll for   the zero- 
l i f t  condition. It is of interest  t0 note that over the test Mach nmiber 
range,  the  rearward  shift.  in aerodynamic center  for the various  tail-on 
configurations  generally is about the same as or  less than the shift 
with t a i l  off .  The increment of pitching-moment-curve slope  near CL = 0 
due to  addition of the tai l  is plotted  against t a i l  height in  f igure 12. 
Although wing plan form a p e n t l y  has quite  an  appreciable  effect on 
the t a i l  contribution to  the  pitching moment, the greatest tail contribu- 
tion  invariably is obtained  with  the  highest tail. - 

The untrimmed lift-drag rat ios  of the varioua wing-fuselage c a i -  
nations are compared a t  Mach nmibers of 0.80 and ai93 in figure 13. At 
either Mach nmiber, the L/D values f o r  the W-wiG are considerably 

drag due to  lift. These trends were indicated for  another W-wing con- 
figuration a t  Low Mach  nuzlibers above Lift  coeff i c ik t s  of about 0.4. 
(See ref 7. ) The cranked w i n g  also splows considerable  reduction in L/D 
at M = 0.90. Values of L/D f o r  the “wing  compare favorably  with  the 
values  for  the swept wing a t  both of  the  selected Mach nunibers; i n  fact ,  
a t  lift coefficients below that f o r  (L/D)-, the “wing is superior t o  
the swept w i n g .  This resul ts  i n  par t  f r o m  the  higher  lift-curve  slopes 
for  the “wing at low l i f t  coefficients;  for exELmple: 

- lower than  those of the o t h e r  wings - mainly because of high values of 

.. 

CL, a t  - 
Configuration . 

M = 0.80 M = 0.90 

Swept wing 0.076 0.067 

“Wing 090 .074 

The drag data presented in  figures 5 to 9 indicate, in general, that the 
minimum drag of the  composite-eng  configurations is slightly  higher  than 
that of the basic swept-wing configuration,  with the greatest difference 
indicated at  the  highest   test  Mach nmiber. 



Swept w i n g  w i t h  leading-edge slat.- - -e f fec t  of adding a 0.10E 
c 

slat ( f i g .  4) t o  the outboard 35 percegt.of the swept-wing aemispan is 
shown in   f i gu re  14. A l s o  shown f o r  comparison are-results from ta i l -of f  L 

tests of - a somewhat similar model ( r e f .  4) with one of the be t t e r  drooped- 
leading-edge  chord-extension  configurations  along w i t h  the clean undrooped 
wing configuration. For the  configuration  of  reference 4, the  entire wing 
leading edge, including a 0.10E chord-extension  located on the  outboard 
35 percent of the semispan, was drooped 6 O .  The pitching3nament  curves 
of the tail-off  configuration w i t h  slats appear to - -be  somewhat  more 
linear than those of the baaic swept wing or the swep-t wing w i t h  drooped 
leading edge and chord-extension&. With a horizontal tail located in 
the center  position,  additLon  of the slat generally made the variat ion 
of pitching moment w i t h  angle o F a t t a c k  more linear,  except a t  a Mach . .  

number of. 0.92. 

" 

Addition of the slat  t o  the swept wing increased  the lift coefficient 
a t  the higher angles of a t tack and also reduced the  drag due t o  lift; 
however, the  maximum L/D was not  appreciably  affected by addition of 
the slat. The drooped-nose chord-extension  configuration of reference 4 
showed a considerable--reduction i n  drag due t o  l i f t  and an appreciable 
increase Fn L/D values,  probably  because of .;he improved :flow over the 
wing associated with the leading-edge droop. The e f f e c t  of drooping the 
nose-slat  configuration W&B not  investigated. The slat generally  increased 
the minimum drag a t  aU bbch nurribers tes ted.  " 

Lateral Characteristics 

La tera l   s tab i l i ty   charac te r i s t ics   o f  the model with the swept and 
M plan forms are shown i n  figures 15 and 16, respectively,  :for  several 
tail configmattons. Both the horizontal ana ve r t i ca l  tails were removed 
for the  tail-off  configuration. 

Posit ive  tai l-off d.irectiona1 s t a b i l i t y  w a s  obtained with  the model 
having the "wing a t  high l i f t  coefficients fo r  all Mach numbers except 
0.92, whereas negatfve  ta i l -off   s tabi l i ty  wa6 obtained with the swept 
wing a t  a l l  lift coefficients and Mach numbers investigated. The posi t ive 
tail-off  values  of  .directional  stability  obtained-with the "wing plan 
form increase w i t h  increasing  negative  values .of CY (See f i g .  16.) 

B '  

The contribution of  the ver t i ca l  tail t o  the di rec t iona l   s t ab i l i t y  
of the "wing model decreased w i t h  increasing  l if-kcoefficient up t o  a 
Mach  number of 0.90, but became essentially  coristmt at- M = 0.92. 
Contrary t o  this,  however, the tail contribution t o  the direct ional  e t a -  
b i l i t y  of the swept wing model wa6 essentially  constant a t  all lift 
coefficients f o r  the lower Mach numbers, but showed an increase at  high 
lifts a t  Mach numbers of 0.90 and 0.92. The ver t ical- ta i l   contr ibut ion 

I -  

. 
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to   d i rec t iona l   s tab i l i ty  of the model wlth  either wing plan form and wLth 
the high  horizontal tail was considerably larger than that obtained  with 

3 the horizontal tail in  the  center  position. 

A reduction of effective dihedral a t  intermediate and high l i f t  
coefficients was  noted at  all t e s t  Mach nmibers fo r  the complete  swept- 
wFng model. With the M-wing, the effective dihedral was not as great as 
with the s w e p t  w-ing. 

An investigation a t  high  subsonic  speeds of a complete model havfng 
a sweptback-wing and various composite  plan-form w-s (including My W, 
and cranked plan f o m )  indicates the following conclusions : 

1. All of the composite plan forms alleviated the tendency toward 
longit- ins tab i l i ty  a t  moderate and high lift coefficients that 
generally  existed for the  basic swept-wing d e l .  O f  the w i n g s  investi- 

i s t i c s  over the test range of h c h  numbere (0.80 to 0.92) and also t o  
allow the  greatest   lat i tude  for  selection of ~ r i z o n t a l - t a i l   p o s i t i a n .  

2. For the me ta i l  length  investigated, and f o r  the hlghest 
horizontal-tail  position (0.57 semispan above wing-chord plane), longi- 
tudinal instability  occurred at  intermediate lift coefficients  for  each 
of the wings , whereas the center t a i l  (on w i n g  chord plane) appeared t o  
a l leviate  the severity of the stabil i ty  reduction the angle-of-attack 
range investigated. 

- gated,  the "wing appeared t o  have the most desirable stabil i ty  character-  

m 

3 .  Over the test range of Mach  number, the lift-drag ra t ios  of the 
"wing were @most the same as those of the swept wing; however, each of 
the  other composite wings showed inferior drag ch ikc te r i s t i c s  at a Mach 
number of 0.90. 

4. Addition of a fixed leading-edge slat t o  the  outboard 35 percent 
of the basic swept-wing semispan appeared t o  provide a somewhat  larger 
s t ab i l i t y  improvement than devices  reported on previously; however, the 
slat investigated  did  not-improve the maxirmrm lift-drag r a t i o  of the basic 
w i n g .  

5 .  Positive  tai l-off  directional  stabil i ty wa8 obtained with the 
m o d e l  having the "wing at high lift coefficients for all Mach numbers 
except 0.92; whereas negative t a i l -o f f  s t ab i l i t y  was obtained wfth the 
swept w i n g  at"al1 lift coefficients and Mach nunibers investigated. 
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The ver t ical- ta i l  Cori-Eribution. to directional stability decreased  with 
increasing lift coefficient up to..& Mach W e r  of 0.90 for  the "wing 
model but remained essentiauy  constant for the swept-wing  model. 
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Loferd force 

Figure 1.- System of axes. Posi t ive values of forces, moments, and angles 
are indicated by a.rrows. 



Geometric chmcferkt& of leStm&l 
All  w i q s  hbrk iuil W. tail 

Areo,sqft 2.25 451 
A 

.6/2 
4.00 398 

1 
I. I8 

.663 

, .  
I 

u I I '  < 
b 

. .  . ' .. 1 .  .. . .. . . ' I  



NACA RM L W 2 9  

Stir. 31.22 

Sta 3L22 

(b) Composite wing plan forma. 

Figure 2.- Continued. 
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(c) Horizontal-tail locations. 

Figure 2.- Continued. 
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Figure 4 .- Detail of leading-edge slat tested on the swept wing. 
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Figure 6 .- Longitudinal characteristics of model with swept-wing plan form. 
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Figure 6.- Continued. 
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Figure 6.- Continued. 



Li f t  coefficien f ,  CL 

Figure 6.- Continued. 
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Figure 7.- Continued. 
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Figure 7.- Continued. 
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Figure 8.- Longitudinal chmacteristics of model w i t h  W-wing plan form. 



Figure 8.- Continued. - 
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Figure 9.- Longitudinal characteristics of model With cranked-wing plan form. 
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Figure- 9.  - Continue&. - 
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Figure 10.- Longitudinal  stability  characteristics of the test d e l  with 
various wing plan forms adjusted to a 0.03E static margin at M = 0.80. 
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Figure 10.- Concluded. 
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Figure 12.- Effect of  t a i l  height on the horizontal-tail contribution to 
the stabUty pazamter of  the composite-wbg models. CL = 0. 
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Figure 13.- Lift-drag ratios of the t e a t  &el with vmious wing plan 
fmm. Horizontal ta i l  off. 
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Angle of aftack, Q ,deg 

Figure 14.- Longitudinal characteristics of the swept wing with a 0.1OE slat 
located on the outboard 35 percent of the mept-wing semispan. 
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Figure 14.- Continued. - 
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Figure lfj.-.L&teral parameter chmacter is t ics  of the swept-wing  model. 
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Figure 16.- Lateral parameter characteristics of the "wing model. 
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